3.2.14 \(\int \frac {a+b \csc ^{-1}(c x)}{x (d+e x^2)^3} \, dx\) [114]

3.2.14.1 Optimal result
3.2.14.2 Mathematica [B] (warning: unable to verify)
3.2.14.3 Rubi [A] (verified)
3.2.14.4 Maple [C] (warning: unable to verify)
3.2.14.5 Fricas [F]
3.2.14.6 Sympy [F(-1)]
3.2.14.7 Maxima [F]
3.2.14.8 Giac [F(-2)]
3.2.14.9 Mupad [F(-1)]

3.2.14.1 Optimal result

Integrand size = 21, antiderivative size = 704 \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=-\frac {b c e \sqrt {1-\frac {1}{c^2 x^2}}}{8 d^2 \left (c^2 d+e\right ) \left (e+\frac {d}{x^2}\right ) x}+\frac {e^2 \left (a+b \csc ^{-1}(c x)\right )}{4 d^3 \left (e+\frac {d}{x^2}\right )^2}-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{d^3 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^3}+\frac {b \sqrt {e} \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{d^3 \sqrt {c^2 d+e}}-\frac {b \sqrt {e} \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{8 d^3 \left (c^2 d+e\right )^{3/2}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^3}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^3} \]

output
1/4*e^2*(a+b*arccsc(c*x))/d^3/(e+d/x^2)^2-e*(a+b*arccsc(c*x))/d^3/(e+d/x^2 
)+1/2*I*(a+b*arccsc(c*x))^2/b/d^3-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1 
-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d^3-1/2*(a+b*arcc 
sc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e 
)^(1/2)))/d^3-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*( 
-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^3-1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I 
/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^3+1/2*I* 
b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e) 
^(1/2)))/d^3+1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/ 
(e^(1/2)-(c^2*d+e)^(1/2)))/d^3+1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2) 
^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^3+1/2*I*b*polylog(2,I*c*(I 
/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^3-1/8*b* 
(c^2*d+2*e)*arctan((c^2*d+e)^(1/2)/c/x/e^(1/2)/(1-1/c^2/x^2)^(1/2))*e^(1/2 
)/d^3/(c^2*d+e)^(3/2)+b*arctan((c^2*d+e)^(1/2)/c/x/e^(1/2)/(1-1/c^2/x^2)^( 
1/2))*e^(1/2)/d^3/(c^2*d+e)^(1/2)-1/8*b*c*e*(1-1/c^2/x^2)^(1/2)/d^2/(c^2*d 
+e)/(e+d/x^2)/x
 
3.2.14.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(2114\) vs. \(2(704)=1408\).

Time = 6.06 (sec) , antiderivative size = 2114, normalized size of antiderivative = 3.00 \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \]

input
Integrate[(a + b*ArcCsc[c*x])/(x*(d + e*x^2)^3),x]
 
output
a/(4*d*(d + e*x^2)^2) + a/(2*d^2*(d + e*x^2)) + (a*Log[x])/d^3 - (a*Log[d 
+ e*x^2])/(2*d^3) + b*((((5*I)/16)*Sqrt[e]*(-(ArcCsc[c*x]/((-I)*Sqrt[d]*Sq 
rt[e] + e*x)) + (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(Sqrt 
[e] + c*((-I)*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(S 
qrt[-(c^2*d) - e]*(Sqrt[d] + I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d])) 
/d^(5/2) - (((5*I)/16)*Sqrt[e]*(-(ArcCsc[c*x]/(I*Sqrt[d]*Sqrt[e] + e*x)) - 
 (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(-Sqrt[e] + c*((-I)* 
c*Sqrt[d] + Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - 
 e]*(Sqrt[d] - I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/d^(5/2) + (Sq 
rt[e]*((I*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d + e)*((-I)*Sq 
rt[d] + Sqrt[e]*x)) - ArcCsc[c*x]/(Sqrt[e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2) - 
 ArcSin[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d + e)*Log[(4*d*Sqrt[e]*Sqrt[c^2* 
d + e]*(I*Sqrt[e] + c*(c*Sqrt[d] - Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])* 
x))/((2*c^2*d + e)*((-I)*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2))))/( 
16*d^2) + (Sqrt[e]*(((-I)*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2 
*d + e)*(I*Sqrt[d] + Sqrt[e]*x)) - ArcCsc[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[ 
e]*x)^2) - ArcSin[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d + e)*Log[(-4*d*Sqrt[e 
]*Sqrt[c^2*d + e]*((-I)*Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2*d + e]*Sqrt[1 - 
1/(c^2*x^2)])*x))/((2*c^2*d + e)*(I*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e) 
^(3/2))))/(16*d^2) - ((I/16)*(Pi^2 - 4*Pi*ArcCsc[c*x] + 8*ArcCsc[c*x]^2...
 
3.2.14.3 Rubi [A] (verified)

Time = 1.83 (sec) , antiderivative size = 764, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5764, 5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 5764

\(\displaystyle -\int \frac {a+b \arcsin \left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^3 x^5}d\frac {1}{x}\)

\(\Big \downarrow \) 5232

\(\displaystyle -\int \left (\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) e^2}{d^2 \left (\frac {d}{x^2}+e\right )^3 x}-\frac {2 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) e}{d^2 \left (\frac {d}{x^2}+e\right )^2 x}+\frac {a+b \arcsin \left (\frac {1}{c x}\right )}{d^2 \left (\frac {d}{x^2}+e\right ) x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}-\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^3}-\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^3}-\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^3}+\frac {e^2 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{4 d^3 \left (\frac {d}{x^2}+e\right )^2}-\frac {e \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{d^3 \left (\frac {d}{x^2}+e\right )}+\frac {i \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )^2}{2 b d^3}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d^3}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d^3}-\frac {b \sqrt {e} \left (c^2 d+2 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{8 d^3 \left (c^2 d+e\right )^{3/2}}+\frac {b \sqrt {e} \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{d^3 \sqrt {c^2 d+e}}-\frac {b c e \sqrt {1-\frac {1}{c^2 x^2}}}{8 d^2 x \left (c^2 d+e\right ) \left (\frac {d}{x^2}+e\right )}\)

input
Int[(a + b*ArcCsc[c*x])/(x*(d + e*x^2)^3),x]
 
output
-1/8*(b*c*e*Sqrt[1 - 1/(c^2*x^2)])/(d^2*(c^2*d + e)*(e + d/x^2)*x) + (e^2* 
(a + b*ArcSin[1/(c*x)]))/(4*d^3*(e + d/x^2)^2) - (e*(a + b*ArcSin[1/(c*x)] 
))/(d^3*(e + d/x^2)) + ((I/2)*(a + b*ArcSin[1/(c*x)])^2)/(b*d^3) + (b*Sqrt 
[e]*ArcTan[Sqrt[c^2*d + e]/(c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(d^3*Sqrt 
[c^2*d + e]) - (b*Sqrt[e]*(c^2*d + 2*e)*ArcTan[Sqrt[c^2*d + e]/(c*Sqrt[e]* 
Sqrt[1 - 1/(c^2*x^2)]*x)])/(8*d^3*(c^2*d + e)^(3/2)) - ((a + b*ArcSin[1/(c 
*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + 
 e])])/(2*d^3) - ((a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcSi 
n[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*d^3) - ((a + b*ArcSin[1/(c*x 
)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e 
])])/(2*d^3) - ((a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcSin[ 
1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*d^3) + ((I/2)*b*PolyLog[2, ((- 
I)*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/d^3 + ( 
(I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^ 
2*d + e])])/d^3 + ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x) 
]))/(Sqrt[e] + Sqrt[c^2*d + e])])/d^3 + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]* 
E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/d^3
 

3.2.14.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5764
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.2.14.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.31 (sec) , antiderivative size = 3479, normalized size of antiderivative = 4.94

method result size
parts \(\text {Expression too large to display}\) \(3479\)
derivativedivides \(\text {Expression too large to display}\) \(3553\)
default \(\text {Expression too large to display}\) \(3553\)

input
int((a+b*arccsc(c*x))/x/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 
output
a/d^3*ln(x)+1/2*a/d^2/(e*x^2+d)-1/2*a/d^3*ln(e*x^2+d)+1/4*a/d/(e*x^2+d)^2+ 
b*(-5/4*I*((e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+2*e 
^2)*arccsc(c*x)^2/d^3/(c^4*d^2+2*c^2*d*e+e^2)+I/(c^2*d+e)/d^3*e*arccsc(c*x 
)^2+1/2*I/(c^2*d+e)/d^2*c^2*sum((_R1^2*c^2*d-2*c^2*d-4*e)/(_R1^2*c^2*d-c^2 
*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1- 
I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2 
+c^2*d))+5/4*((e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+ 
2*e^2)*ln(1-d*c^2*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/ 
2)+2*e))*arccsc(c*x)/d^3/(c^4*d^2+2*c^2*d*e+e^2)+1/2*I*arccsc(c*x)^2*(c^2* 
d+2*(e*(c^2*d+e))^(1/2)+2*e)/(c^2*d+e)/d^3-1/8*e*(8*c^6*d^2*arccsc(c*x)*x^ 
2+6*c^6*d*e*arccsc(c*x)*x^4+((c^2*x^2-1)/c^2/x^2)^(1/2)*c^5*d^2*x+((c^2*x^ 
2-1)/c^2/x^2)^(1/2)*c^5*d*e*x^3-I*c^4*d^2-2*I*c^4*d*e*x^2-I*e^2*c^4*x^4+8* 
c^4*d*e*arccsc(c*x)*x^2+6*arccsc(c*x)*e^2*c^4*x^4)/d^3/(c^2*d+e)/(c^2*e*x^ 
2+c^2*d)^2-5/8*I*((e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2 
)*e+2*e^2)*polylog(2,d*c^2*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2* 
d+e))^(1/2)+2*e))/d^3/(c^4*d^2+2*c^2*d*e+e^2)+1/4*I*polylog(2,d*c^2*(I/c/x 
+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*(c^2*d+2*(e*(c^ 
2*d+e))^(1/2)+2*e)/(c^2*d+e)/d^3-1/2*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*ln( 
1-d*c^2*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*a 
rccsc(c*x)/(c^2*d+e)/d^3+1/2*I/(c^2*d+e)/d^3*e*sum((_R1^2*c^2*d-2*c^2*d...
 
3.2.14.5 Fricas [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3} x} \,d x } \]

input
integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^3,x, algorithm="fricas")
 
output
integral((b*arccsc(c*x) + a)/(e^3*x^7 + 3*d*e^2*x^5 + 3*d^2*e*x^3 + d^3*x) 
, x)
 
3.2.14.6 Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate((a+b*acsc(c*x))/x/(e*x**2+d)**3,x)
 
output
Timed out
 
3.2.14.7 Maxima [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3} x} \,d x } \]

input
integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^3,x, algorithm="maxima")
 
output
1/4*a*((2*e*x^2 + 3*d)/(d^2*e^2*x^4 + 2*d^3*e*x^2 + d^4) - 2*log(e*x^2 + d 
)/d^3 + 4*log(x)/d^3) + b*integrate(arctan2(1, sqrt(c*x + 1)*sqrt(c*x - 1) 
)/(e^3*x^7 + 3*d*e^2*x^5 + 3*d^2*e*x^3 + d^3*x), x)
 
3.2.14.8 Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^3,x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 
3.2.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^3} \, dx=\int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{x\,{\left (e\,x^2+d\right )}^3} \,d x \]

input
int((a + b*asin(1/(c*x)))/(x*(d + e*x^2)^3),x)
 
output
int((a + b*asin(1/(c*x)))/(x*(d + e*x^2)^3), x)